Authors: Théophraste Henry Elizabeth Fabre Laurent S. Baccar Michele Lamuraglia .
Published online on: January 7, 2019 .
Abstract
Trabectedin (ET‑743) is a marine alkaloid isolated from the Caribbean tunicate Ecteinascidia turbinata, with a chemical structure characterized by three fused tetrahydroisoquinoline rings.
In the present case report, two patients with advanced and metastatic uterine leiomyosarcomas (ULMS) with significant progression‑free survival (PFS) and overall survival (OS) administered Trabectedin as second and third line treatment are reported.
The first case received third line Trabectedin with a PFS of 24 months and an OS of 35 months.
The second case received second line Trabectedin with a PFS of 24 months and an OS of 30 months.
In addition, a good safety record was obtained in the long‑term administration of Trabectedin (more so in case 1 than case 2), with a good quality of life.
07 enero 2019
Biotecnológicas junto a Renovables. El sector donde se Refugia el Inversor .
Compañías como Biosearch, Reig Jofre, PharmaMar u Oryzon Genomics se sitúan entre las que más subidas registran en el Mercado Continuo.
Biosearch es la que más avanza de todas ellas. La antigua Puleva Biotech se sitúa solo por detras de Audax Renovables y escala alrededor de un 5%, hasta los 1,3 euros por título. Por tanto, la compañía continúa con el rally experimentado durante el pasado curso, que le llegó de cotizar en los 0,6 euros hasta superar la cota de un euro.
Junto a Biosearch se sitúan otras compañías del sector o relacionadas como Reig Jofre, PharmaMar u Oryzon Genomics. La primera avanza más de un 5% y alcanza máximos del mes de octubre mientras que la segunda rebota cerca de un 3% y da un alivio a sus accionistas tras las caídas sufridas el pasado curso.
Oryzon Genomics sube más de un 3% y le permite alejarse de los mínimos de finales de 2017 marcados en el mes de diciembre. Además, la biotecnológica catalana ha anunciado la incorporación de Michael T. Ropacki como vicepresidente de Desarrollo Clínico para su programa en sistema nervioso y se convierte en el primer directivo permanentemente en Estados Unidos desde que la compañía cotiza en el Mercado Español, por lo que se convierte en "pieza clave para la nueva etapa de crecimiento Oryzon", según ha señalado la empresa. ...
Very low intensity ultrasounds as a new strategy to improve selective delivery of nanoparticles-complexes in cancer cells .
Background
The possibility to combine Low Intensity UltraSound (LIUS) and Nanoparticles (NP) could represent a promising strategy for drugs delivery in tumors difficult to treat overcoming resistance to therapies. On one side the NP can carry drugs that specifically target the tumors on the other the LIUS can facilitate and direct the delivery to the tumor cells. In this study, we investigated whether Very Low Intensity UltraSound (VLIUS), at intensities lower than 120 mW/cm2, might constitute a novel strategy to improve delivery to tumor cells. Thus, in order to verify the efficacy of this novel modality in terms of increase selective uptake in tumoral cells and translate speedily in clinical practice, we investigated VLIUS in three different in vitro experimental tumor models and normal cells adopting three different therapeutic strategies.
Methods
VLIUS at different intensities and exposure time were applied to tumor and normal cells to evaluate the efficiency in uptake of labeled human ferritin (HFt)-based NP, the delivery of NP complexed Firefly luciferase reported gene (lipoplex-LUC), and the tumor-killing of chemotherapeutic agent.
Results
Specifically, we found that specific VLIUS intensity (120 mW/cm2) increases tumor cell uptake of HFt-based NPs at specific concentration (0.5 mg/ml). Similarly, VLIUS treatments increase significantly tumor cells delivery of lipoplex-LUC cargos. Furthermore, of interest, VLIUS increases tumor killing of chemotherapy drug trabectedin in a time dependent fashion. Noteworthy, VLIUS treatments are well tolerated in normal cells with not significant effects on cell survival, NPs delivery and drug-induced toxicity, suggesting a tumor specific fashion.
Conclusions
Our data shed novel lights on the potential application of VLIUS for the design and development of novel therapeutic strategies aiming to efficiently deliver NP loaded cargos or anticancer drugs into more aggressive and unresponsive tumors niche.
The possibility to combine Low Intensity UltraSound (LIUS) and Nanoparticles (NP) could represent a promising strategy for drugs delivery in tumors difficult to treat overcoming resistance to therapies. On one side the NP can carry drugs that specifically target the tumors on the other the LIUS can facilitate and direct the delivery to the tumor cells. In this study, we investigated whether Very Low Intensity UltraSound (VLIUS), at intensities lower than 120 mW/cm2, might constitute a novel strategy to improve delivery to tumor cells. Thus, in order to verify the efficacy of this novel modality in terms of increase selective uptake in tumoral cells and translate speedily in clinical practice, we investigated VLIUS in three different in vitro experimental tumor models and normal cells adopting three different therapeutic strategies.
Methods
VLIUS at different intensities and exposure time were applied to tumor and normal cells to evaluate the efficiency in uptake of labeled human ferritin (HFt)-based NP, the delivery of NP complexed Firefly luciferase reported gene (lipoplex-LUC), and the tumor-killing of chemotherapeutic agent.
Results
Specifically, we found that specific VLIUS intensity (120 mW/cm2) increases tumor cell uptake of HFt-based NPs at specific concentration (0.5 mg/ml). Similarly, VLIUS treatments increase significantly tumor cells delivery of lipoplex-LUC cargos. Furthermore, of interest, VLIUS increases tumor killing of chemotherapy drug trabectedin in a time dependent fashion. Noteworthy, VLIUS treatments are well tolerated in normal cells with not significant effects on cell survival, NPs delivery and drug-induced toxicity, suggesting a tumor specific fashion.
Conclusions
Our data shed novel lights on the potential application of VLIUS for the design and development of novel therapeutic strategies aiming to efficiently deliver NP loaded cargos or anticancer drugs into more aggressive and unresponsive tumors niche.